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Abstract. We characterize the steady state of a driven diffusive lattice gas in which each
site holds several particles, and the dynamics is activated and asymmetric. Using a quantum
Hamiltonian formalism, we show that for arbitrary transition rates the model has product invariant
measure. In the steady state, a pairwise balance condition is shown to hold. Configurationsn′′
andn′ leading respectively into and out of a given configurationn are matched in pairs so that
the flux of transitions fromn′′ to n is equal to the flux fromn to n′. Pairwise balance is more
general than the condition of detailed balance and holds in the non-equilibrium steady state of
a number of stochastic models.

1. Introduction

We consider a driven diffusive lattice gas in one dimension that generalizes the simple
exclusion process introduced by Spitzer [1, 2]. This model is described as follows. The
system consists of indistinguishable particles on a lattice which have the properties:

(a) there can be at mostN > 1 particles at each lattice site; and
(b) each particle interacts only with other particles at the same site.

During the time interval (t, t + dt), a particle which is at sitei makes a transition to
the closest sitei + n which is not fully occupied at that time. This process occurs with
probability ckdt , wherek 6 N is the number of particles ati at time t and 0< ck < ∞.

We term this process drop-push dynamics [3], which may be visualized as particles
moving in one direction (say rightward) on a one-dimensional lattice, with each lattice site
being a trap that can hold amaximumof N particles. Escape from a trap is activated and
the rate of escape depends on the number of particles already in there. We also imagine
that the particle that hops out of a sitei is the topmost particle at that site, whereas when
a particle drops into a trap it goes to the bottom. Should a trap be full, then a particle
that hops into that site pushes the topmost particle out into the next site, thus effectively
bouncing with unit probability to the next site on the right.

One motivation to study models such as the above arises from physical considerations
such as the nature of transport in tenuously connected media. A physical realization of the
drop-push model occurs, for example, in the field-induced transport of particles in a random
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medium such as the percolation cluster [3]: the field determines the asymmetry in transition
rates, a path on the backbone provides the effective1D lattice on which the particles move
and backbends [4] are the traps from which activated escape takes place. This and other
interacting particle systems have recently begun to attract much attention, as they provide
examples of systems far from equilibrium which are amenable to some degree of analysis
[5]. For the caseN = 1, the above drop-push model is related to simple asymmetric
exclusion models [2] which have been extensively studied [6–8], and for which several
results are known. The caseN = 1 also corresponds to the dynamics of a Toom model
interface in the low noise limit [9], where it is known that the steady state is characterized
by product measure.

In the present paper we show that the steady state of the lattice gas with drop-push
dynamics can also be completely determined. We define the system in terms of a master
operator technique—the ‘quantum Hamiltonian’ formalism—to show that for arbitrary
N > 1 and arbitraryck, the invariant distribution has product measure. This is detailed
in section 2. In section 3 we define the condition of pairwise balance; namely that in the
steady state, with every transition out of a particular configuration is uniquely associated an
equal-flux transition leading into that configuration. This generalization of the well known
condition of detailed balance holds for drop-push dynamics and several other stochastic
lattice gas models. This is followed by a brief summary in section 4.

2. Invariant measures

Consider the finite latticeS = {0, 1, 2, . . . , L − 1} with periodic boundary conditions, i.e.
the one-dimensional integer lattice with integers taken moduloL. There can be up toN
particles at each site and hence the state space of the process isX = {0, 1, . . . , N}S . A
given configurationn is a specification of all site occupancieski where 06 i 6 L − 1
and 06 k 6 N . We shall denote the probability of finding the configurationn at time
t by f (n; t) with

∑
n∈X f (n; t) = 1 and define the process in terms of a master equation

satisfied byf (n; t). As described in the introduction, transitions to other configurations,
such as

(. . . , mi = k, mi+1 = l, . . .) → (. . . , mi = k − 1, mi+1 = l + 1, . . .) (1)

or, if sitesi + 1 up to i + r − 1 areall fully occupied,

(. . . , mi = k, N, N, . . . , mi+r = l, . . .) → (. . . , mi = k − 1, N, N, . . . , mi+r = l + 1, . . .)

(2)

both occur at rateck, where we definec0 = 0. In order to write a master equation for
the process we follow a route that has been successfully applied (particularly in the past
few years) in the study of one-dimensional stochastic dynamics, the quantum Hamiltonian
formulation.

We assign to each elementn ∈ X a basis vector|n〉 in a (N + 1)L-dimensional vector
space which we shall also denote byX. In addition to|n〉 we shall define the transposed
vectors〈n| which endowX with an orthonormal basis and a scalar product written〈·|·〉
and defined by〈n|n′〉 = δn,n′ . The simple form of the state space suggests the tensor basis,
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|n〉 ≡ |k1) ⊗ |k2) ⊗ · · · ⊗ |kL) where the single site vectors

|k) ≡


0
...

1
...

0

 (3)

denoting the occupation byk particles have a 1 in the(k + 1)th position in the column
and zero elsewhere. In this way the probability distributionf (n; t) is mapped onto a state
vector

|f (t)〉 ≡
∑
n∈X

f (n; t)|n〉 (4)

i.e. f (n; t) = 〈n|f (t)〉. By defining

〈s| ≡
∑
n∈X

〈n| (5)

conservation (and normalization) of probability reads〈s|f (t)〉 = ∑
n∈X f (n; t) = 1.

In what follows we need ‘local operators’Qi acting non-trivially only on sitei

of the lattice, i.e. matrices acting onX = (CN+1)⊗L which have the formQi ≡
1 ⊗ 1 ⊗ · · · ⊗ Q ⊗ · · · ⊗ 1, whereQ is a (N + 1) × (N + 1) matrix at theith position in
the tensor product and 1 is the(N + 1)-dimensional unit matrix. In particular we shall use
E

α,β

i whereEα,β is the(N +1)× (N +1) matrix with matrix elements(Eα,β)p,q = δα,pδβ,q

(1 6 α, β, p, q 6 N + 1). These matrices have a simple interpretation in terms of the
stochastic process:Eα,α

i ≡ P
(α−1)
i projects on states which haveα − 1 particles on sitei,

whereasEα,β

i for α 6= β turns a state withβ − 1 particles on sitei into a state withα − 1
particles. Particle occupancies on other sites remain unchanged.

Now we are in a position to define the process in terms of a linear operatorH acting
on X = (CN+1)⊗L:

∂

∂t
|f (t)〉 = −H |f (t)〉 (6)

where the ‘quantum Hamiltonian operator’H for the process described above is given by

H = −
L∑

i=1

L−1∑
r=1

ui(r). (7)

The hopping of a particle with rate 0< ck < ∞ from site i with k particles to sitei + r

with k′ < N particles with fully occupied intermediate sites(i +1, . . . , i +r −1) is encoded
in the matrices

ui(r) ≡ Ai

i+r−1∏
j=i+1

P
(N)
j Bi+r − Si

i+r−1∏
j=i+1

P
(N)
j Ti+r . (8)

In this expressionP (N)
j are the projectors on fully occupied lattice sites defined in the

preceding paragraph and

A =
N+1∑
k=2

ck−1E
k−1,k (9)

B =
N∑

k=1

Ek+1,k (10)



840 G M Schütz et al

S =
N∑

k=1

ckP
(k) (11)

T =
N−1∑
k=0

P (k). (12)

This is the complete definition of the process. The master equation satisfied byf (n; t)

may be obtained in its usual form from (4) and (6) by taking the scalar product with〈n|.
The resulting expression is lengthy and unilluminating and we shall not write it down here.
Note that the solution to the master equation (6) in terms of an initial distribution|f 〉 at
time t = 0 is given by|f (t)〉 = exp(−Ht)|f 〉 (t > 0). If (and only if) |f 〉 is a (right)
eigenvector ofH with eigenvalue zero then the measure defined by this state is an invariant
measure.H is constructed such that the real part of all eigenvalues ofH is larger than or
equal to zero. Its matrix elements(H)p,q satisfy (H)p,p > 0 ∀p, (H)p,q 6 0 ∀p, q with
p 6= q and

∑
p Hp,q = 0 ∀q, i.e. the sum of all entries in each column adds up to zero.

Now we show the following.

The product measure defined by the state vector|µ〉 = |µ)⊗L whereµ > 0,

|µ) = 1

Z


λ0

λ1µ

λ2µ
2

...

λNµN

 λ0 = 1, λk = ck
1

c1c2 · · · ck

(13)

and Z = ∑N
k=0 λkµ

k > 1 is an invariant measure of the process, i.e. the vector|µ〉 is a
right eigenstate ofH with eigenvalue 0 and〈s|µ〉 = 1.

We first prove〈s|µ〉 = 1. The vector〈s| defined in (5) may be written in tensor form
as 〈s| = (

∑N
m=0(m|)⊗L, while |µ〉 = (

∑N
k=0 λkµ

k|k)/Z)⊗L. Since(m|k) = δm,k one finds
〈s|µ〉 = (

∑N
k=0 λkµ

k)L/ZL = 1.
The proof thatH |µ〉 = 0 is less trivial except forµ = 0 andµ = ∞ respectively,

in which cases the lattice is completely empty (respectively fully occupied) and therefore
trivially stationary. Thus, in what follows we shall assumeµ 6= 0, ∞. First, we note the
following identities:

A|µ) = µ

N−1∑
k=0

λk+1

λk

ck+1P
(k)|µ) (14)

B|µ) = µ

N∑
k=1

λk−1

λk

P (k)|µ) (15)

which are simple consequences of the definition of the quantities involved. Therefore, one
has

ui(r)|µ〉 =
{ N∑

k=1

N−1∑
l=0

λk−1

λk

λl+1

λl

cl+1P
(l)
i

( i+r−1∏
j=i+1

P
(N)
j

)
P

(k)
i+r

−
N∑

k=1

N−1∑
l=0

ckP
(k)
i

( i+r−1∏
j=i+1

P
(N)
j

)
P

(l)
i+r

}
|µ〉 (16)

≡ ûi(r)|µ〉 (17)
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where ûi(r) is defined by the expression inside the curly brackets. Shifting summation
indices and using

∑N
k=0 Pi(k) = 1 yields

ûi(r) =
N∑

k=1

ck

[( i+r−1∏
j=i+1

P
(N)
j

)
P

(k)
i+r −

( i+r−1∏
j=i

P
(N)
j

)
P

(k)
i+r

+P
(k)
i

( i+r∏
j=i+1

P
(N)
j

)
− P

(k)
i

( i+r−1∏
j=i+1

P
(N)
j

)]
(18)

and therefore

H |µ〉 =
L∑

i=1

L−1∑
r=1

ûi(r)|µ〉

=
N∑

k=1

ck

L∑
i=1

{ L−1∑
r=2

i+r−2∏
j=i

P
(N)
j P

(k)

i+r−1 −
L−1∑
r=1

i+r−1∏
j=i

P
(N)
j P

(k)
i+r

+
L−1∑
r=1

P
(k)
i

i+r∏
j=i+1

P
(N)
j −

L−1∑
r=2

P
(k)
i

i+r−1∏
j=i+1

P
(N)
j

}
|µ〉

=
N∑

k=1

ck

L∑
i=1

[
P

(k)
i

i+L−1∏
j=i+1

P
(N)
j −

i+L−2∏
j=i

P
(N)
j P

(k)

i+L−1

]
|µ〉

= 0. (19)

In this part of the calculation only summation indices were shifted leading to a cancellation
of all termsûi(r) in the double sum overi andr.

The occurrence of the parameterµ reflects conservation of the total number of particles
in the process. ExpandingZL|µ〉 in a power series inµ as ZL|µ〉 = ∑NL

M=0 µM |M̃〉 and
normalizing |M〉 ≡ |M̃〉/〈s|M̃〉 yields invariant measures|M〉 characterizing the process
with a fixed number of particlesM.

The same calculation could be repeated for the reflected process where particles hop to
the nearest available site to theirleft with the same ratesck. This would lead to the same
invariant measure which is therefore invariant also for the combined process where particles
are allowed to hop to the right or to the left with ratesaLck andaRck respectively and with
an arbitrary, butk-independent ratioaL/aR.

The product invariant measure in equation (13) also appears to obtain in a variety
of stochastic lattice gas models with dynamical rules quite different from the drop-
push case presently under consideration—for example, Spitzer’s zero-range process [1]
wherein particles can hop from a given site to any other site. Another case is the
stationary state of an independent site model with a master equation of the formṖn =
cn+1Pn+1 − cnPn + µc1(Pn−1 − Pn). This system will also have the same product measure,
although the underlying dynamics is, of course, quite distinct.

3. Pairwise balance

In this section we define a pairwise balance condition which is a generalization of the
condition of detailed balance for equilibrium systems and show that a lattice gas obeying
drop-push dynamics satisfies this condition.
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The condition for stationarity is that the total flux into each configurationn is equal to
the flux out of the configuration,∑

n′∈X

w(n → n′)fµ(n) =
∑
n′′∈X

w(n′′ → n)fµ(n′′) (20)

where w(n → n′) is a transition rate andfµ(n) is the stationary value off (n; t). A
sufficient condition for this is as follows.

With every configurationn′ that can be reached by an elementary transition from
configurationn is associated a unique configurationn′′ with the property that in the steady
state

w(n′′ → n)fµ(n′′) = w(n → n′)fµ(n). (21)

This association is 1–1 and exhaustive: the identification of a particular influx with a
particular outflux is the condition required forpairwise balanceto hold.

The familiar condition of detailed balance [10] is obtained as the special case in which
the configurationsn′ andn′′ are the same. Detailed balance holds in equilibrium systems,
while pairwise balance holds also for the non-equilibrium steady states in a class of stochastic
models of the type under consideration here. (While we have verified its applicability to
several models, the complete range of validity of pairwise balance remains to be explored.)

Now we show that the condition of pairwise balance is satisfied for drop-push dynamics.
Suppose the transitionn → n′ involves transferring a particle from sitei (with occupation
mi = k) to site i + r (with mi+r =  l), as in equation (2), where each of the(r − 1) sites in
between is full (mp = N for p = i, i + 1, . . . , i + r − 1). Suppose that the(q − 1) sites
precedingi are also full (mp = N for p = i − 1, . . . , i − q + 1), and thatmi−q = j < N .
Configurationn′′ is defined as that which has the same occupations as configurationn, for
all sites except the pair of sitesi − q and i; at these sites,mi−q = j + 1 andmi = k − 1.

The transition fromn′′ to n, i.e.

(. . . , mi−q = j + 1, N, N, . . . , mi = k − 1, . . .) → (. . . , mi−q = j, N, N, . . . , mi = k, . . .)

(22)

occurs at ratew(n′′ → n) = cj+1 while w(n → n′) = ck. Writing fµ(n) as
∏

p λp, the
pairwise balance condition equation (21) reduces to

cj+1λj+1λk−1 = ckλjλk. (23)

This condition is satisfied, in view of equation (13).
While we have considered the transition caused by a rightward hop, the argument holds,

by reflection, for leftward hops also. Thus, drop-push dynamics satisfies the condition of
pairwise balance.

4. Summary

Here we have examined a recently introduced stochastic lattice gas model which is of
relevance in the study of a variety of transport phenomena. In this system, the Markov
chain is irreducible: each configuration can be reached from any other configuration and
the dynamics is ergodic. We have determined the unique invariant measure of the steady
state through a quantum Hamiltonian formalism. In this steady state the probabilitypµ(k)
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of finding 06 k 6 N particles on a site in the lattice ispµ(k) = λkµ
k, where 06 µ 6 ∞

is a free parameter determining the average density of the lattice gas (cf equation (13)).
Expanding the unnormalized measure in powers ofµ leads to steady states with a fixed
number of particles. The probability that a hopping process occurs depends only on the
number of particles on the site from which a particle hops away, but not on the overall
configuration of the system. Unlike the simple exclusion process, where hops are attempted
to a nearest neighbour site and are sucessful only if that site is vacant, in the present model
everyattempted hop is successful. As a result it is theon-siteinteraction which determines
the steady state and not the random motion leading to it [1]. In this respect this model bears
some similarity to the problem of flows in networks of waiting lines [11].

We have introduced the notion of pairwise balance, which is a generalization of detailed
balance to non-equilibrium situations, and shown that the condition is satisfied in the steady
state of the model. It is interesting to note that a variety of non-equilibrium systems
with stochastic dynamics do in fact also obey this condition—examples are the asymmetric
exclusion process [7], its extensions to longer range hopping [12], and Abelian sandpile
models [13].
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